Pure electronic metal-insulator transition at the interface of complex oxides

نویسندگان

  • D. Meyers
  • Jian Liu
  • J. W. Freeland
  • S. Middey
  • M. Kareev
  • Jihwan Kwon
  • J. M. Zuo
  • Yi-De Chuang
  • J. W. Kim
  • P. J. Ryan
  • J. Chakhalian
چکیده

In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic phase separation at the LaAlO₃/SrTiO₃ interface.

There are many electronic and magnetic properties exhibited by complex oxides. Electronic phase separation (EPS) is one of those, the presence of which can be linked to exotic behaviours, such as colossal magnetoresistance, metal-insulator transition and high-temperature superconductivity. A variety of new and unusual electronic phases at the interfaces between complex oxides, in particular bet...

متن کامل

Time-resolved electronic phase transitions in manganites.

The dynamics of first-order electronic phase transitions in complex transition metal oxides are not well understood but are crucial in understanding the emergent phenomena of electronic phase separation. We show that a manganite system reduced to the scale of its inherent electronic charge-ordered insulating and ferromagnetic metal phase domains allows for the direct observation of single elect...

متن کامل

Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface

The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO₃/SrTiO₃, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivi...

متن کامل

Theory of mott transition : Applications to transition metal oxides

2014 We study the metal-insulator transition due to correlations between electrons using a Hubbard model. Neglecting fluctuations in charge, we only take into account fluctuations in spin density which build up magnetic moments on each site. A close analogy with binary alloys follows from this. At zero temperature, with increasing value of the ratio of the interaction between electrons U to the...

متن کامل

3 0 A ug 2 01 2 Electronic correlations and crystal structure distortions in BaBiO

BaBiO3 is a material where formally Bi 4+ ions with the half-filled 6s-states form the alternating set of Bi and Bi ions resulting in a charge ordered insulator. The charge ordering is accompanied by the breathing distortion of the BiO6 octahedra (extension and contraction of the Bi-O bond lengths). Standard Density Functional Theory (DFT) calculations fail to obtain the crystal structure insta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016